Sufficient conditions for the uniqueness of a probability field and estimates for correlations
Matematičeskie zametki, Tome 18 (1975) no. 4, pp. 609-620.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we will investigate probability fields (probability distributions) on spaces of the form $X=\prod\limits_{i\in V}X_i$, where $X_i=\{0,1\}$ and $V$ is countable and deduce criteria for the uniqueness of a probability field having a given set of conditional probabilities $$ \{P_i(x_i/X_{V\setminus i})\},\quad i\in V,\quad x_i\in X_i,\quad x_{V\setminus i}\in\prod_{j\in V\setminus i}X_j. $$ The results obtained here are convenient for the estimates of probability fields of a sufficiently general form (e.g., with an arbitrary conjugate potential). In the case of a Markov field an exponential estimate for the correlations is derived.
@article{MZM_1975_18_4_a14,
     author = {O. N. Stavskaya},
     title = {Sufficient conditions for the uniqueness of a probability field and estimates for correlations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {609--620},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a14/}
}
TY  - JOUR
AU  - O. N. Stavskaya
TI  - Sufficient conditions for the uniqueness of a probability field and estimates for correlations
JO  - Matematičeskie zametki
PY  - 1975
SP  - 609
EP  - 620
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a14/
LA  - ru
ID  - MZM_1975_18_4_a14
ER  - 
%0 Journal Article
%A O. N. Stavskaya
%T Sufficient conditions for the uniqueness of a probability field and estimates for correlations
%J Matematičeskie zametki
%D 1975
%P 609-620
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a14/
%G ru
%F MZM_1975_18_4_a14
O. N. Stavskaya. Sufficient conditions for the uniqueness of a probability field and estimates for correlations. Matematičeskie zametki, Tome 18 (1975) no. 4, pp. 609-620. http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a14/