Criteria for stability of the point spectrum under completely continuous perturbations
Matematičeskie zametki, Tome 18 (1975) no. 4, pp. 601-607
Cet article a éte moissonné depuis la source Math-Net.Ru
We show that a number $\lambda$ is an eigenvalue of the operator $T+C$ for an arbitrary compact perturbation $C$ if and only if the operator $T-\lambda I$ is semi-Fredholm and $\mathrm{ind}\,(T-\lambda I)>0$.
@article{MZM_1975_18_4_a13,
author = {L. N. Nikol'skaya},
title = {Criteria for stability of the point spectrum under completely continuous perturbations},
journal = {Matemati\v{c}eskie zametki},
pages = {601--607},
year = {1975},
volume = {18},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a13/}
}
L. N. Nikol'skaya. Criteria for stability of the point spectrum under completely continuous perturbations. Matematičeskie zametki, Tome 18 (1975) no. 4, pp. 601-607. http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a13/