Criteria for stability of the point spectrum under completely continuous perturbations
Matematičeskie zametki, Tome 18 (1975) no. 4, pp. 601-607.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that a number $\lambda$ is an eigenvalue of the operator $T+C$ for an arbitrary compact perturbation $C$ if and only if the operator $T-\lambda I$ is semi-Fredholm and $\mathrm{ind}\,(T-\lambda I)>0$.
@article{MZM_1975_18_4_a13,
     author = {L. N. Nikol'skaya},
     title = {Criteria for stability of the point spectrum under completely continuous perturbations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {601--607},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a13/}
}
TY  - JOUR
AU  - L. N. Nikol'skaya
TI  - Criteria for stability of the point spectrum under completely continuous perturbations
JO  - Matematičeskie zametki
PY  - 1975
SP  - 601
EP  - 607
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a13/
LA  - ru
ID  - MZM_1975_18_4_a13
ER  - 
%0 Journal Article
%A L. N. Nikol'skaya
%T Criteria for stability of the point spectrum under completely continuous perturbations
%J Matematičeskie zametki
%D 1975
%P 601-607
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a13/
%G ru
%F MZM_1975_18_4_a13
L. N. Nikol'skaya. Criteria for stability of the point spectrum under completely continuous perturbations. Matematičeskie zametki, Tome 18 (1975) no. 4, pp. 601-607. http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a13/