A generalization of the Bochner integral to locally convex spaces
Matematičeskie zametki, Tome 18 (1975) no. 4, pp. 577-588
Voir la notice de l'article provenant de la source Math-Net.Ru
We present a generalization of the Bochner integral to locally convex spaces. This generalization preserves the nuclearity of the mapping of the space of continuous functions on a compactum represented by the Bochner integral. We introduce locally convex spaces in which the study of a broad class of vector measures with values in these spaces reduces to the study of measures with values in a normed space. The results obtained are used to describe Fréchet spaces possessing the $RN$ property.
@article{MZM_1975_18_4_a10,
author = {V. I. Rybakov},
title = {A generalization of the {Bochner} integral to locally convex spaces},
journal = {Matemati\v{c}eskie zametki},
pages = {577--588},
publisher = {mathdoc},
volume = {18},
number = {4},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a10/}
}
V. I. Rybakov. A generalization of the Bochner integral to locally convex spaces. Matematičeskie zametki, Tome 18 (1975) no. 4, pp. 577-588. http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a10/