Certain inequalities in various metrics for trigonometric polynomials and their derivatives
Matematičeskie zametki, Tome 18 (1975) no. 4, pp. 489-498.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish for $0$ the analog of the Bernstein–Zygmund inequality for the derivative of a trigonometric polynomial $$ \int_{-\pi}^\pi|t_n'(x)|^pdx\leqslant c_pn^p\int_{-\pi}^\pi|t_n(x)|^pdx. $$ We prove weighted inequalities, exact in the sense of order, for trigonometric polynomials and their derivatives in various integral metrics with exponents $0$, $q\leqslant\infty$.
@article{MZM_1975_18_4_a1,
     author = {V. I. Ivanov},
     title = {Certain inequalities in various metrics for trigonometric polynomials and their derivatives},
     journal = {Matemati\v{c}eskie zametki},
     pages = {489--498},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a1/}
}
TY  - JOUR
AU  - V. I. Ivanov
TI  - Certain inequalities in various metrics for trigonometric polynomials and their derivatives
JO  - Matematičeskie zametki
PY  - 1975
SP  - 489
EP  - 498
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a1/
LA  - ru
ID  - MZM_1975_18_4_a1
ER  - 
%0 Journal Article
%A V. I. Ivanov
%T Certain inequalities in various metrics for trigonometric polynomials and their derivatives
%J Matematičeskie zametki
%D 1975
%P 489-498
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a1/
%G ru
%F MZM_1975_18_4_a1
V. I. Ivanov. Certain inequalities in various metrics for trigonometric polynomials and their derivatives. Matematičeskie zametki, Tome 18 (1975) no. 4, pp. 489-498. http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a1/