Spaces of analytic functions in a~region with an angle
Matematičeskie zametki, Tome 18 (1975) no. 3, pp. 411-420
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we consider the space $A_p$ of analytic functions which are $p$-power integrable in a region with an angle. We find a set of numbers $p$ and $q$ ($1/p+1/q=1$) (which depend on the magnitude of the angle) for which the spaces $A_p$ and $A_q$ are mutually conjugate. In each of these spaces we introduce the orthonormal system
$$
e_n=\sqrt{(n+1)/\pi}\varphi'\varphi^n,\quad n=0,1,\dots
$$
where $\varphi$ is the conformal mapping of the region onto the unit disc. We prove it is dense and determine when it will be a basis.
@article{MZM_1975_18_3_a9,
author = {A. M. Shikhvatov},
title = {Spaces of analytic functions in a~region with an angle},
journal = {Matemati\v{c}eskie zametki},
pages = {411--420},
publisher = {mathdoc},
volume = {18},
number = {3},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a9/}
}
A. M. Shikhvatov. Spaces of analytic functions in a~region with an angle. Matematičeskie zametki, Tome 18 (1975) no. 3, pp. 411-420. http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a9/