Spaces of analytic functions in a~region with an angle
Matematičeskie zametki, Tome 18 (1975) no. 3, pp. 411-420.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the space $A_p$ of analytic functions which are $p$-power integrable in a region with an angle. We find a set of numbers $p$ and $q$ ($1/p+1/q=1$) (which depend on the magnitude of the angle) for which the spaces $A_p$ and $A_q$ are mutually conjugate. In each of these spaces we introduce the orthonormal system $$ e_n=\sqrt{(n+1)/\pi}\varphi'\varphi^n,\quad n=0,1,\dots $$ where $\varphi$ is the conformal mapping of the region onto the unit disc. We prove it is dense and determine when it will be a basis.
@article{MZM_1975_18_3_a9,
     author = {A. M. Shikhvatov},
     title = {Spaces of analytic functions in a~region with an angle},
     journal = {Matemati\v{c}eskie zametki},
     pages = {411--420},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a9/}
}
TY  - JOUR
AU  - A. M. Shikhvatov
TI  - Spaces of analytic functions in a~region with an angle
JO  - Matematičeskie zametki
PY  - 1975
SP  - 411
EP  - 420
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a9/
LA  - ru
ID  - MZM_1975_18_3_a9
ER  - 
%0 Journal Article
%A A. M. Shikhvatov
%T Spaces of analytic functions in a~region with an angle
%J Matematičeskie zametki
%D 1975
%P 411-420
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a9/
%G ru
%F MZM_1975_18_3_a9
A. M. Shikhvatov. Spaces of analytic functions in a~region with an angle. Matematičeskie zametki, Tome 18 (1975) no. 3, pp. 411-420. http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a9/