Some questions on the univalence of functions of the class $\Sigma$
Matematičeskie zametki, Tome 18 (1975) no. 3, pp. 403-410
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we give an example of two convex functions in $|\zeta|>1$ whose arithmetic mean is nonconvex. We calculate the radius of convexity of the sum of two convex functions; it is equal to $\sqrt{1+\sqrt2}$. For functions $F(\zeta)=\zeta+b_1/\zeta+\dots$, where $F'(\zeta)=f(\zeta)/\zeta$, if $f(\zeta)=\zeta+a_1/\zeta+\dots$ is univalent $|\zeta|>1$, then the radius of univalence is the root of the equation $4E(1/r)/K(1/r)+1/r^2=3$.
@article{MZM_1975_18_3_a8,
author = {E. A. Shirokova},
title = {Some questions on the univalence of functions of the class $\Sigma$},
journal = {Matemati\v{c}eskie zametki},
pages = {403--410},
year = {1975},
volume = {18},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a8/}
}
E. A. Shirokova. Some questions on the univalence of functions of the class $\Sigma$. Matematičeskie zametki, Tome 18 (1975) no. 3, pp. 403-410. http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a8/