Some questions on the univalence of functions of the class $\Sigma$
Matematičeskie zametki, Tome 18 (1975) no. 3, pp. 403-410.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we give an example of two convex functions in $|\zeta|>1$ whose arithmetic mean is nonconvex. We calculate the radius of convexity of the sum of two convex functions; it is equal to $\sqrt{1+\sqrt2}$. For functions $F(\zeta)=\zeta+b_1/\zeta+\dots$, where $F'(\zeta)=f(\zeta)/\zeta$, if $f(\zeta)=\zeta+a_1/\zeta+\dots$ is univalent $|\zeta|>1$, then the radius of univalence is the root of the equation $4E(1/r)/K(1/r)+1/r^2=3$.
@article{MZM_1975_18_3_a8,
     author = {E. A. Shirokova},
     title = {Some questions on the univalence of functions of the class $\Sigma$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {403--410},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a8/}
}
TY  - JOUR
AU  - E. A. Shirokova
TI  - Some questions on the univalence of functions of the class $\Sigma$
JO  - Matematičeskie zametki
PY  - 1975
SP  - 403
EP  - 410
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a8/
LA  - ru
ID  - MZM_1975_18_3_a8
ER  - 
%0 Journal Article
%A E. A. Shirokova
%T Some questions on the univalence of functions of the class $\Sigma$
%J Matematičeskie zametki
%D 1975
%P 403-410
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a8/
%G ru
%F MZM_1975_18_3_a8
E. A. Shirokova. Some questions on the univalence of functions of the class $\Sigma$. Matematičeskie zametki, Tome 18 (1975) no. 3, pp. 403-410. http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a8/