A~property of entire functions with real taylor coefficients
Matematičeskie zametki, Tome 18 (1975) no. 3, pp. 395-402.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $f(z)$ is an entire transcendental function with real Taylor coefficients, $M(r)=max|f(z)|$ on $|z|=r$, and $\{\lambda_n\}$ is the sequence of sign changes of the coefficients. We will show that if $\sum(1/\lambda_n)\infty$, then $\overline{\lim\limits_{r\to\infty}}\ln\cdot|f(r)|/\ln M(r)=1$.
@article{MZM_1975_18_3_a7,
     author = {M. N. Sheremeta},
     title = {A~property of entire functions with real taylor coefficients},
     journal = {Matemati\v{c}eskie zametki},
     pages = {395--402},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a7/}
}
TY  - JOUR
AU  - M. N. Sheremeta
TI  - A~property of entire functions with real taylor coefficients
JO  - Matematičeskie zametki
PY  - 1975
SP  - 395
EP  - 402
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a7/
LA  - ru
ID  - MZM_1975_18_3_a7
ER  - 
%0 Journal Article
%A M. N. Sheremeta
%T A~property of entire functions with real taylor coefficients
%J Matematičeskie zametki
%D 1975
%P 395-402
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a7/
%G ru
%F MZM_1975_18_3_a7
M. N. Sheremeta. A~property of entire functions with real taylor coefficients. Matematičeskie zametki, Tome 18 (1975) no. 3, pp. 395-402. http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a7/