Imbedding theorems for spaces of functions with partial derivatives that are summable in various powers
Matematičeskie zametki, Tome 18 (1975) no. 3, pp. 379-393
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the anisotropic spaces $W_{\bar p}^{\bar l}(\Omega)$, $\bar l=(l_1,l_2,\dots,l_n)$, $l_i>0$, $\bar p=(p_1,p_2,\dots$, $1, $i=1,2,\dots n$. We extend the class of domains for which imbedding theorems for these spaces have the same form as for $E_n$. We investigate complete continuity of the corresponding imbedding operators.
@article{MZM_1975_18_3_a6,
author = {B. L. Fain},
title = {Imbedding theorems for spaces of functions with partial derivatives that are summable in various powers},
journal = {Matemati\v{c}eskie zametki},
pages = {379--393},
year = {1975},
volume = {18},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a6/}
}
B. L. Fain. Imbedding theorems for spaces of functions with partial derivatives that are summable in various powers. Matematičeskie zametki, Tome 18 (1975) no. 3, pp. 379-393. http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a6/