Imbedding theorems for spaces of functions with partial derivatives that are summable in various powers
Matematičeskie zametki, Tome 18 (1975) no. 3, pp. 379-393.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the anisotropic spaces $W_{\bar p}^{\bar l}(\Omega)$, $\bar l=(l_1,l_2,\dots,l_n)$, $l_i>0$, $\bar p=(p_1,p_2,\dots$, $1$, $i=1,2,\dots n$. We extend the class of domains for which imbedding theorems for these spaces have the same form as for $E_n$. We investigate complete continuity of the corresponding imbedding operators.
@article{MZM_1975_18_3_a6,
     author = {B. L. Fain},
     title = {Imbedding theorems for spaces of functions with partial derivatives that are summable in various powers},
     journal = {Matemati\v{c}eskie zametki},
     pages = {379--393},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a6/}
}
TY  - JOUR
AU  - B. L. Fain
TI  - Imbedding theorems for spaces of functions with partial derivatives that are summable in various powers
JO  - Matematičeskie zametki
PY  - 1975
SP  - 379
EP  - 393
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a6/
LA  - ru
ID  - MZM_1975_18_3_a6
ER  - 
%0 Journal Article
%A B. L. Fain
%T Imbedding theorems for spaces of functions with partial derivatives that are summable in various powers
%J Matematičeskie zametki
%D 1975
%P 379-393
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a6/
%G ru
%F MZM_1975_18_3_a6
B. L. Fain. Imbedding theorems for spaces of functions with partial derivatives that are summable in various powers. Matematičeskie zametki, Tome 18 (1975) no. 3, pp. 379-393. http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a6/