A~property of logarithmically concave sequences
Matematičeskie zametki, Tome 18 (1975) no. 3, pp. 467-472.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the class of logarithmically concave sequences is closed relative to an operation which is a generalization of the convolution of two sequences. As a consequence, we give a new proof of the fact that in the discrete, as well as in the continuous case, the sum of independent random variables, having a growing distribution, also has a growing distribution.
@article{MZM_1975_18_3_a15,
     author = {O. P. Vinogradov},
     title = {A~property of logarithmically concave sequences},
     journal = {Matemati\v{c}eskie zametki},
     pages = {467--472},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a15/}
}
TY  - JOUR
AU  - O. P. Vinogradov
TI  - A~property of logarithmically concave sequences
JO  - Matematičeskie zametki
PY  - 1975
SP  - 467
EP  - 472
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a15/
LA  - ru
ID  - MZM_1975_18_3_a15
ER  - 
%0 Journal Article
%A O. P. Vinogradov
%T A~property of logarithmically concave sequences
%J Matematičeskie zametki
%D 1975
%P 467-472
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a15/
%G ru
%F MZM_1975_18_3_a15
O. P. Vinogradov. A~property of logarithmically concave sequences. Matematičeskie zametki, Tome 18 (1975) no. 3, pp. 467-472. http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a15/