Estimate of a~multiple sum involving the Legendre symbol
Matematičeskie zametki, Tome 18 (1975) no. 3, pp. 421-427.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose $f(x_1,\dots,x_n)$ is a polynomial of even degree $d$ having coefficients in the finite field $k=[q]$ and satisfying certain natural conditions, and let $\chi$ be the quadratic character of $k$. Then $$ \Bigl|\sum x_1,\dots,x_n\in kx(f(x_1,\dots,x_n))\Bigr|\le Cq^{n/2}, $$ where the constant $C$ depends only on $d$ and $n$.
@article{MZM_1975_18_3_a10,
     author = {G. I. Perel'muter},
     title = {Estimate of a~multiple sum involving the {Legendre} symbol},
     journal = {Matemati\v{c}eskie zametki},
     pages = {421--427},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a10/}
}
TY  - JOUR
AU  - G. I. Perel'muter
TI  - Estimate of a~multiple sum involving the Legendre symbol
JO  - Matematičeskie zametki
PY  - 1975
SP  - 421
EP  - 427
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a10/
LA  - ru
ID  - MZM_1975_18_3_a10
ER  - 
%0 Journal Article
%A G. I. Perel'muter
%T Estimate of a~multiple sum involving the Legendre symbol
%J Matematičeskie zametki
%D 1975
%P 421-427
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a10/
%G ru
%F MZM_1975_18_3_a10
G. I. Perel'muter. Estimate of a~multiple sum involving the Legendre symbol. Matematičeskie zametki, Tome 18 (1975) no. 3, pp. 421-427. http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a10/