The uniqueness of order in the spaces $L_p[0,1]$ and $l_p$
Matematičeskie zametki, Tome 18 (1975) no. 3, pp. 313-325.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is considered to what extent the order in the spaces $L_p$ and $l_p$ is determined by the linearly topological type. It is proved that, for example, $L_1$ and $L_2$ have a unique continuous order, and the spaces $l_p$, $p\ne2,\infty$, admit only discrete orders.
@article{MZM_1975_18_3_a0,
     author = {Yu. A. Abramovich and P. Voitaschik},
     title = {The uniqueness of order in the spaces $L_p[0,1]$ and $l_p$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {313--325},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a0/}
}
TY  - JOUR
AU  - Yu. A. Abramovich
AU  - P. Voitaschik
TI  - The uniqueness of order in the spaces $L_p[0,1]$ and $l_p$
JO  - Matematičeskie zametki
PY  - 1975
SP  - 313
EP  - 325
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a0/
LA  - ru
ID  - MZM_1975_18_3_a0
ER  - 
%0 Journal Article
%A Yu. A. Abramovich
%A P. Voitaschik
%T The uniqueness of order in the spaces $L_p[0,1]$ and $l_p$
%J Matematičeskie zametki
%D 1975
%P 313-325
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a0/
%G ru
%F MZM_1975_18_3_a0
Yu. A. Abramovich; P. Voitaschik. The uniqueness of order in the spaces $L_p[0,1]$ and $l_p$. Matematičeskie zametki, Tome 18 (1975) no. 3, pp. 313-325. http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a0/