The uniqueness of order in the spaces $L_p[0,1]$ and $l_p$
Matematičeskie zametki, Tome 18 (1975) no. 3, pp. 313-325
Cet article a éte moissonné depuis la source Math-Net.Ru
It is considered to what extent the order in the spaces $L_p$ and $l_p$ is determined by the linearly topological type. It is proved that, for example, $L_1$ and $L_2$ have a unique continuous order, and the spaces $l_p$, $p\ne2,\infty$, admit only discrete orders.
@article{MZM_1975_18_3_a0,
author = {Yu. A. Abramovich and P. Voitaschik},
title = {The uniqueness of order in the spaces $L_p[0,1]$ and $l_p$},
journal = {Matemati\v{c}eskie zametki},
pages = {313--325},
year = {1975},
volume = {18},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a0/}
}
Yu. A. Abramovich; P. Voitaschik. The uniqueness of order in the spaces $L_p[0,1]$ and $l_p$. Matematičeskie zametki, Tome 18 (1975) no. 3, pp. 313-325. http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a0/