Boundary values of generalized solutions of a~homogeneous Sturm--Liouville equation in a~space of vector functions
Matematičeskie zametki, Tome 18 (1975) no. 2, pp. 243-252.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a differential equation of the form $-y''+A^2y=0$, where $A$ is a self-adjoint operator in a Hilbert space $H$. We show that each generalized solution of this equation inw $W_{-m}(0,b)$ ($0$, $m\ge0$) has boundary values in the space $H_{-m-1/2}$, where $H_j$ ($-\infty$) is the Hilbert scale of spaces generated by the operator $A$, and $W_{-m}(0,b)$ is the space of continuous linear functionals on order $\mathring W_m(0,b)$, the completion of the space of infinitely differentiable vector functions with compact support with respect to the norm $\|u\|_{W_m(0,b)}=(\|u\|_{L_2(H_m,(0,b))}+\|u\|_{L_2(H,(0,b))}^{(m)})$. It follows that each function $u(t,x)$ which is harmonic in the strip $G=[0,b]\times(-\infty,\infty)$ and which is in the space that is dual to order $\mathring W_2^m(G)$ has limiting values as $t\to0$ and $t\to b$ in the space $W_2^{-m-1/2}(-\infty,\infty)$.
@article{MZM_1975_18_2_a9,
     author = {V. I. Gorbachuk},
     title = {Boundary values of generalized solutions of a~homogeneous {Sturm--Liouville} equation in a~space of vector functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {243--252},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a9/}
}
TY  - JOUR
AU  - V. I. Gorbachuk
TI  - Boundary values of generalized solutions of a~homogeneous Sturm--Liouville equation in a~space of vector functions
JO  - Matematičeskie zametki
PY  - 1975
SP  - 243
EP  - 252
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a9/
LA  - ru
ID  - MZM_1975_18_2_a9
ER  - 
%0 Journal Article
%A V. I. Gorbachuk
%T Boundary values of generalized solutions of a~homogeneous Sturm--Liouville equation in a~space of vector functions
%J Matematičeskie zametki
%D 1975
%P 243-252
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a9/
%G ru
%F MZM_1975_18_2_a9
V. I. Gorbachuk. Boundary values of generalized solutions of a~homogeneous Sturm--Liouville equation in a~space of vector functions. Matematičeskie zametki, Tome 18 (1975) no. 2, pp. 243-252. http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a9/