Boundary values of generalized solutions of a homogeneous Sturm–Liouville equation in a space of vector functions
Matematičeskie zametki, Tome 18 (1975) no. 2, pp. 243-252
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider a differential equation of the form $-y''+A^2y=0$, where $A$ is a self-adjoint operator in a Hilbert space $H$. We show that each generalized solution of this equation inw $W_{-m}(0,b)$ ($0, $m\ge0$) has boundary values in the space $H_{-m-1/2}$, where $H_j$ ($-\infty) is the Hilbert scale of spaces generated by the operator $A$, and $W_{-m}(0,b)$ is the space of continuous linear functionals on order $\mathring W_m(0,b)$, the completion of the space of infinitely differentiable vector functions with compact support with respect to the norm $\|u\|_{W_m(0,b)}=(\|u\|_{L_2(H_m,(0,b))}+\|u\|_{L_2(H,(0,b))}^{(m)})$. It follows that each function $u(t,x)$ which is harmonic in the strip $G=[0,b]\times(-\infty,\infty)$ and which is in the space that is dual to order $\mathring W_2^m(G)$ has limiting values as $t\to0$ and $t\to b$ in the space $W_2^{-m-1/2}(-\infty,\infty)$.
@article{MZM_1975_18_2_a9,
author = {V. I. Gorbachuk},
title = {Boundary values of generalized solutions of a~homogeneous {Sturm{\textendash}Liouville} equation in a~space of vector functions},
journal = {Matemati\v{c}eskie zametki},
pages = {243--252},
year = {1975},
volume = {18},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a9/}
}
TY - JOUR AU - V. I. Gorbachuk TI - Boundary values of generalized solutions of a homogeneous Sturm–Liouville equation in a space of vector functions JO - Matematičeskie zametki PY - 1975 SP - 243 EP - 252 VL - 18 IS - 2 UR - http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a9/ LA - ru ID - MZM_1975_18_2_a9 ER -
V. I. Gorbachuk. Boundary values of generalized solutions of a homogeneous Sturm–Liouville equation in a space of vector functions. Matematičeskie zametki, Tome 18 (1975) no. 2, pp. 243-252. http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a9/