Normal form of real differential equations
Matematičeskie zametki, Tome 18 (1975) no. 2, pp. 227-241.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a neighborhood of a fixed point we consider an autonomous analytic system of ordinary differential equations. We establish the existence of a normalizing transformation for which the normal form retains the properties of the original system such as reality and invariance with respect to a linear change of variables. For real systems we consider the problem of existence of an analytic transformation into normal form and the problem of existence of a finitely smooth transformation into a linear system.
@article{MZM_1975_18_2_a8,
     author = {A. D. Bruno},
     title = {Normal form of real differential equations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {227--241},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a8/}
}
TY  - JOUR
AU  - A. D. Bruno
TI  - Normal form of real differential equations
JO  - Matematičeskie zametki
PY  - 1975
SP  - 227
EP  - 241
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a8/
LA  - ru
ID  - MZM_1975_18_2_a8
ER  - 
%0 Journal Article
%A A. D. Bruno
%T Normal form of real differential equations
%J Matematičeskie zametki
%D 1975
%P 227-241
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a8/
%G ru
%F MZM_1975_18_2_a8
A. D. Bruno. Normal form of real differential equations. Matematičeskie zametki, Tome 18 (1975) no. 2, pp. 227-241. http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a8/