Normal form of real differential equations
Matematičeskie zametki, Tome 18 (1975) no. 2, pp. 227-241
Cet article a éte moissonné depuis la source Math-Net.Ru
In a neighborhood of a fixed point we consider an autonomous analytic system of ordinary differential equations. We establish the existence of a normalizing transformation for which the normal form retains the properties of the original system such as reality and invariance with respect to a linear change of variables. For real systems we consider the problem of existence of an analytic transformation into normal form and the problem of existence of a finitely smooth transformation into a linear system.
@article{MZM_1975_18_2_a8,
author = {A. D. Bruno},
title = {Normal form of real differential equations},
journal = {Matemati\v{c}eskie zametki},
pages = {227--241},
year = {1975},
volume = {18},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a8/}
}
A. D. Bruno. Normal form of real differential equations. Matematičeskie zametki, Tome 18 (1975) no. 2, pp. 227-241. http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a8/