Representation of unimodular matrices in the form $DOTU$ for $n=3$
Matematičeskie zametki, Tome 18 (1975) no. 2, pp. 213-221
Voir la notice de l'article provenant de la source Math-Net.Ru
A proof is given of the representation of any unimodular matrix of order three as the product of a diagonal, orthogonal, triangular and unimodular integral one.
@article{MZM_1975_18_2_a6,
author = {Kh. N. Narzullaev},
title = {Representation of unimodular matrices in the form $DOTU$ for $n=3$},
journal = {Matemati\v{c}eskie zametki},
pages = {213--221},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a6/}
}
Kh. N. Narzullaev. Representation of unimodular matrices in the form $DOTU$ for $n=3$. Matematičeskie zametki, Tome 18 (1975) no. 2, pp. 213-221. http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a6/