Representation of unimodular matrices in the form $DOTU$ for $n=3$
Matematičeskie zametki, Tome 18 (1975) no. 2, pp. 213-221.

Voir la notice de l'article provenant de la source Math-Net.Ru

A proof is given of the representation of any unimodular matrix of order three as the product of a diagonal, orthogonal, triangular and unimodular integral one.
@article{MZM_1975_18_2_a6,
     author = {Kh. N. Narzullaev},
     title = {Representation of unimodular matrices in the form $DOTU$ for $n=3$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {213--221},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a6/}
}
TY  - JOUR
AU  - Kh. N. Narzullaev
TI  - Representation of unimodular matrices in the form $DOTU$ for $n=3$
JO  - Matematičeskie zametki
PY  - 1975
SP  - 213
EP  - 221
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a6/
LA  - ru
ID  - MZM_1975_18_2_a6
ER  - 
%0 Journal Article
%A Kh. N. Narzullaev
%T Representation of unimodular matrices in the form $DOTU$ for $n=3$
%J Matematičeskie zametki
%D 1975
%P 213-221
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a6/
%G ru
%F MZM_1975_18_2_a6
Kh. N. Narzullaev. Representation of unimodular matrices in the form $DOTU$ for $n=3$. Matematičeskie zametki, Tome 18 (1975) no. 2, pp. 213-221. http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a6/