Maximal packing density of $n$-dimensional Euclidean space with equal balls
Matematičeskie zametki, Tome 18 (1975) no. 2, pp. 301-311.

Voir la notice de l'article provenant de la source Math-Net.Ru

An estimate $\delta_n\le2^{-n(0,\!5237+o(1))}$ is obtained for the maximal packing density of $n$-dimensional Euclidean space with equal balls for $n\to\infty$. This result is based on an improvement in a corresponding upper estimate for the maximal packing density of the unit $(n-1)$-dimensional sphere with spherical caps of fixed angular radius.
@article{MZM_1975_18_2_a15,
     author = {V. I. Levenshtein},
     title = {Maximal packing density of $n$-dimensional {Euclidean} space with equal balls},
     journal = {Matemati\v{c}eskie zametki},
     pages = {301--311},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a15/}
}
TY  - JOUR
AU  - V. I. Levenshtein
TI  - Maximal packing density of $n$-dimensional Euclidean space with equal balls
JO  - Matematičeskie zametki
PY  - 1975
SP  - 301
EP  - 311
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a15/
LA  - ru
ID  - MZM_1975_18_2_a15
ER  - 
%0 Journal Article
%A V. I. Levenshtein
%T Maximal packing density of $n$-dimensional Euclidean space with equal balls
%J Matematičeskie zametki
%D 1975
%P 301-311
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a15/
%G ru
%F MZM_1975_18_2_a15
V. I. Levenshtein. Maximal packing density of $n$-dimensional Euclidean space with equal balls. Matematičeskie zametki, Tome 18 (1975) no. 2, pp. 301-311. http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a15/