Topological transitivity of billiards in polygons
Matematičeskie zametki, Tome 18 (1975) no. 2, pp. 291-300.

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider a billiard in a polygon $Q\subset R^2$ having all angles commensurate with $\pi$. For the majority of initial directions, density of every infinite semitrajectory in configuration space is proved. Also proved is the typicality of polygons for which some billiard trajectory is dense in phase space.
@article{MZM_1975_18_2_a14,
     author = {A. N. Zemlyakov and A. B. Katok},
     title = {Topological transitivity of billiards in polygons},
     journal = {Matemati\v{c}eskie zametki},
     pages = {291--300},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a14/}
}
TY  - JOUR
AU  - A. N. Zemlyakov
AU  - A. B. Katok
TI  - Topological transitivity of billiards in polygons
JO  - Matematičeskie zametki
PY  - 1975
SP  - 291
EP  - 300
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a14/
LA  - ru
ID  - MZM_1975_18_2_a14
ER  - 
%0 Journal Article
%A A. N. Zemlyakov
%A A. B. Katok
%T Topological transitivity of billiards in polygons
%J Matematičeskie zametki
%D 1975
%P 291-300
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a14/
%G ru
%F MZM_1975_18_2_a14
A. N. Zemlyakov; A. B. Katok. Topological transitivity of billiards in polygons. Matematičeskie zametki, Tome 18 (1975) no. 2, pp. 291-300. http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a14/