Formulas for functions of ordered operators
Matematičeskie zametki, Tome 18 (1975) no. 2, pp. 267-277
Voir la notice de l'article provenant de la source Math-Net.Ru
In an algebra with a lattice of functions of ordered elements (e.g., in an algebra of operators), we investigate the expansions of functions of the type $f(A+B)$ and $\varphi(\stackrel1A,\stackrel2B)$ in powers of the commutators $A$, $B$. In particular, we obtain all the terms of the expansion
$$
f(A+B)=f(\stackrel1A+\stackrel2B)+\frac12\stackrel2{\overline{[A,B]}}f^{(2)}(\stackrel1A+\stackrel3B)+\dots
$$
A diagram method for a similar type of calculation is developed. Our discussion is based on Maslov's technique of ordered operators.
@article{MZM_1975_18_2_a12,
author = {M. V. Karasev},
title = {Formulas for functions of ordered operators},
journal = {Matemati\v{c}eskie zametki},
pages = {267--277},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a12/}
}
M. V. Karasev. Formulas for functions of ordered operators. Matematičeskie zametki, Tome 18 (1975) no. 2, pp. 267-277. http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a12/