Newton's method and a~surface with Jacobian zero
Matematičeskie zametki, Tome 18 (1975) no. 2, pp. 253-260
Voir la notice de l'article provenant de la source Math-Net.Ru
Suppose a system of nonlinear real equations $P(x)=0$, where $P$ and $x$ are n-dimensional vectors, is solved by means of the continuous analog of Newton's method. We study the behavior of the method near the surface $S$ with Jacobian zero: $S=\{x|det P'(x)=0\}$. A computational strategy is suggested in the case where the method diverges.
@article{MZM_1975_18_2_a10,
author = {E. I. Lin'kov},
title = {Newton's method and a~surface with {Jacobian} zero},
journal = {Matemati\v{c}eskie zametki},
pages = {253--260},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a10/}
}
E. I. Lin'kov. Newton's method and a~surface with Jacobian zero. Matematičeskie zametki, Tome 18 (1975) no. 2, pp. 253-260. http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a10/