Boundary properties of functions harmonic in a~strip
Matematičeskie zametki, Tome 18 (1975) no. 2, pp. 169-178.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study in the $L_p$-norm, $1\le p\le\infty$, the boundary properties of the solution to the Dirichlet problem for the strip $$ \mathscr A=\{(x,y):-\infty\infty,\ 0\eta,\ \eta>0\} $$ and its dependence on the structural properties of the given boundary values (symmetric, antisymmetric). In particular, for the case of symmetric boundary values we obtain direct and inverse theorems on approximation in terms of the general modulus of continuity of second order.
@article{MZM_1975_18_2_a1,
     author = {V. I. Gorbaichuk and P. V. Zaderej},
     title = {Boundary properties of functions harmonic in a~strip},
     journal = {Matemati\v{c}eskie zametki},
     pages = {169--178},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a1/}
}
TY  - JOUR
AU  - V. I. Gorbaichuk
AU  - P. V. Zaderej
TI  - Boundary properties of functions harmonic in a~strip
JO  - Matematičeskie zametki
PY  - 1975
SP  - 169
EP  - 178
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a1/
LA  - ru
ID  - MZM_1975_18_2_a1
ER  - 
%0 Journal Article
%A V. I. Gorbaichuk
%A P. V. Zaderej
%T Boundary properties of functions harmonic in a~strip
%J Matematičeskie zametki
%D 1975
%P 169-178
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a1/
%G ru
%F MZM_1975_18_2_a1
V. I. Gorbaichuk; P. V. Zaderej. Boundary properties of functions harmonic in a~strip. Matematičeskie zametki, Tome 18 (1975) no. 2, pp. 169-178. http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a1/