Uniform convergence of expansions into a~multiple trigonometric Fourier series or a~Fourier integral
Matematičeskie zametki, Tome 18 (1975) no. 2, pp. 153-168
Voir la notice de l'article provenant de la source Math-Net.Ru
Questions of convergence almost everywhere of expansions into a multiple trigonometric Fourier series or a Fourier integral are studied for functions from $L_p$, $p\ge1$, with summation over rectangles. Moreover, a ldquogeneralized localization principle,rdquo understood in the sense of convergence almost everywhere, is considered in the paper.
@article{MZM_1975_18_2_a0,
author = {I. L. Bloshanskii},
title = {Uniform convergence of expansions into a~multiple trigonometric {Fourier} series or {a~Fourier} integral},
journal = {Matemati\v{c}eskie zametki},
pages = {153--168},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a0/}
}
TY - JOUR AU - I. L. Bloshanskii TI - Uniform convergence of expansions into a~multiple trigonometric Fourier series or a~Fourier integral JO - Matematičeskie zametki PY - 1975 SP - 153 EP - 168 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a0/ LA - ru ID - MZM_1975_18_2_a0 ER -
I. L. Bloshanskii. Uniform convergence of expansions into a~multiple trigonometric Fourier series or a~Fourier integral. Matematičeskie zametki, Tome 18 (1975) no. 2, pp. 153-168. http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a0/