Uniform convergence of expansions into a~multiple trigonometric Fourier series or a~Fourier integral
Matematičeskie zametki, Tome 18 (1975) no. 2, pp. 153-168.

Voir la notice de l'article provenant de la source Math-Net.Ru

Questions of convergence almost everywhere of expansions into a multiple trigonometric Fourier series or a Fourier integral are studied for functions from $L_p$, $p\ge1$, with summation over rectangles. Moreover, a ldquogeneralized localization principle,rdquo understood in the sense of convergence almost everywhere, is considered in the paper.
@article{MZM_1975_18_2_a0,
     author = {I. L. Bloshanskii},
     title = {Uniform convergence of expansions into a~multiple trigonometric {Fourier} series or {a~Fourier} integral},
     journal = {Matemati\v{c}eskie zametki},
     pages = {153--168},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a0/}
}
TY  - JOUR
AU  - I. L. Bloshanskii
TI  - Uniform convergence of expansions into a~multiple trigonometric Fourier series or a~Fourier integral
JO  - Matematičeskie zametki
PY  - 1975
SP  - 153
EP  - 168
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a0/
LA  - ru
ID  - MZM_1975_18_2_a0
ER  - 
%0 Journal Article
%A I. L. Bloshanskii
%T Uniform convergence of expansions into a~multiple trigonometric Fourier series or a~Fourier integral
%J Matematičeskie zametki
%D 1975
%P 153-168
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a0/
%G ru
%F MZM_1975_18_2_a0
I. L. Bloshanskii. Uniform convergence of expansions into a~multiple trigonometric Fourier series or a~Fourier integral. Matematičeskie zametki, Tome 18 (1975) no. 2, pp. 153-168. http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a0/