Conditional Chebyshev center of a bounded set of continuous functions
Matematičeskie zametki, Tome 18 (1975) no. 1, pp. 67-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

Subspaces $\{\mathscr L^n\}$ of codimension $n\infty$ of the space $C(T)$ of functions, continuous in a bicompactum $T$, are considered. A criterion, whereby a subspace $\mathscr L^n$, contains a Chebyshev center for any bounded set of $C(T)$, is established in terms of the properties of the supports of measures which are annihilated in $\mathscr L^n$. This criterion is equivalent to the following conditions: $\mathscr L^n$ contains an element of best approximation for every $x\in C(T)$, and the support of every measure, which is annihilated in $\mathscr L^n$, is extremally unconnected with respect to the bicompactum $T$.
@article{MZM_1975_18_1_a9,
     author = {A. L. Garkavi and V. N. Zamyatin},
     title = {Conditional {Chebyshev} center of a bounded set of continuous functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {67--76},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a9/}
}
TY  - JOUR
AU  - A. L. Garkavi
AU  - V. N. Zamyatin
TI  - Conditional Chebyshev center of a bounded set of continuous functions
JO  - Matematičeskie zametki
PY  - 1975
SP  - 67
EP  - 76
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a9/
LA  - ru
ID  - MZM_1975_18_1_a9
ER  - 
%0 Journal Article
%A A. L. Garkavi
%A V. N. Zamyatin
%T Conditional Chebyshev center of a bounded set of continuous functions
%J Matematičeskie zametki
%D 1975
%P 67-76
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a9/
%G ru
%F MZM_1975_18_1_a9
A. L. Garkavi; V. N. Zamyatin. Conditional Chebyshev center of a bounded set of continuous functions. Matematičeskie zametki, Tome 18 (1975) no. 1, pp. 67-76. http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a9/