Moduli of continuity and rearrangements
Matematičeskie zametki, Tome 18 (1975) no. 1, pp. 63-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the modulus of continuity of a function in $L_p(0,1)$ majorizes the modulus of continuity of its decreasing rearrangement.
@article{MZM_1975_18_1_a8,
     author = {Yu. A. Brudnyi},
     title = {Moduli of continuity and rearrangements},
     journal = {Matemati\v{c}eskie zametki},
     pages = {63--66},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a8/}
}
TY  - JOUR
AU  - Yu. A. Brudnyi
TI  - Moduli of continuity and rearrangements
JO  - Matematičeskie zametki
PY  - 1975
SP  - 63
EP  - 66
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a8/
LA  - ru
ID  - MZM_1975_18_1_a8
ER  - 
%0 Journal Article
%A Yu. A. Brudnyi
%T Moduli of continuity and rearrangements
%J Matematičeskie zametki
%D 1975
%P 63-66
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a8/
%G ru
%F MZM_1975_18_1_a8
Yu. A. Brudnyi. Moduli of continuity and rearrangements. Matematičeskie zametki, Tome 18 (1975) no. 1, pp. 63-66. http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a8/