Semidirect sums of Lie algebras
Matematičeskie zametki, Tome 18 (1975) no. 1, pp. 31-40
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper examines the problem of classifying finite-dimensional Lie algebras over the field $C$ with a given radical $\mathfrak{r}$ and also the problem of classifying algebraic Lie algebras with a given nilpotent radical $\mathfrak{r}$. A detailed study is made of the case when $\mathfrak{r}$ is the nilpotent radical of a parabolic subalgebra of a semisimple Lie algebra.
@article{MZM_1975_18_1_a4,
author = {A. L. Onishchik and Yu. B. Khakimdzhanov},
title = {Semidirect sums of {Lie} algebras},
journal = {Matemati\v{c}eskie zametki},
pages = {31--40},
publisher = {mathdoc},
volume = {18},
number = {1},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a4/}
}
A. L. Onishchik; Yu. B. Khakimdzhanov. Semidirect sums of Lie algebras. Matematičeskie zametki, Tome 18 (1975) no. 1, pp. 31-40. http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a4/