Equiconvergence and equisummability of nonharmonic Fourier expansions with ordinary trigonometric series
Matematičeskie zametki, Tome 18 (1975) no. 1, pp. 9-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given $f\in L(-\pi,\pi)$, we consider its nonharmonic Fourier series $f(x)\sim\sum c_ne^{i\lambda}n^x$, where $\lambda_n$ are the roots of the entire function $L(z)=\int_{-\pi}^\pi e^{izt}\,d\sigma(T)$. We show that this series is equiconvergent, uniformly inside $(-\pi,\pi)$, and equisummable with the Fourier series of $f$ with respect to the trigonometric system if $\sigma'(t)=k(t)(\pi-|t|)^{-\alpha}$, $\alpha\in(0,1)$, $\operatorname{var}k\infty$, $k(\pi-0)\ne0$, $k(-\pi+0)\ne0$.
@article{MZM_1975_18_1_a1,
     author = {A. M. Sedletskii},
     title = {Equiconvergence and equisummability of nonharmonic {Fourier} expansions with ordinary trigonometric series},
     journal = {Matemati\v{c}eskie zametki},
     pages = {9--17},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a1/}
}
TY  - JOUR
AU  - A. M. Sedletskii
TI  - Equiconvergence and equisummability of nonharmonic Fourier expansions with ordinary trigonometric series
JO  - Matematičeskie zametki
PY  - 1975
SP  - 9
EP  - 17
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a1/
LA  - ru
ID  - MZM_1975_18_1_a1
ER  - 
%0 Journal Article
%A A. M. Sedletskii
%T Equiconvergence and equisummability of nonharmonic Fourier expansions with ordinary trigonometric series
%J Matematičeskie zametki
%D 1975
%P 9-17
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a1/
%G ru
%F MZM_1975_18_1_a1
A. M. Sedletskii. Equiconvergence and equisummability of nonharmonic Fourier expansions with ordinary trigonometric series. Matematičeskie zametki, Tome 18 (1975) no. 1, pp. 9-17. http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a1/