Self-adjointness of the dirac operator in a~space of vector functions
Matematičeskie zametki, Tome 18 (1975) no. 1, pp. 3-7.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the proof of the self-adjointness of the minimal operator defined on the space $L_2(-\infty,\infty;H)$ ($H$ being a separable Hilbert space) by the expression $l=iJ\frac d{dt}+A+B(t)$. The coefficients in this expression are self-adjoint operators on $H$, with $A$ being unbounded, $AJ+JA=0$, and the function $\|B(t)\|_H$ being assumed to lie in $L_2^{\operatorname{loc}}(-\infty,\infty)$. The result obtained is applicable to the Dirac operator.
@article{MZM_1975_18_1_a0,
     author = {V. A. Bezverkhnii},
     title = {Self-adjointness of the dirac operator in a~space of vector functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--7},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a0/}
}
TY  - JOUR
AU  - V. A. Bezverkhnii
TI  - Self-adjointness of the dirac operator in a~space of vector functions
JO  - Matematičeskie zametki
PY  - 1975
SP  - 3
EP  - 7
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a0/
LA  - ru
ID  - MZM_1975_18_1_a0
ER  - 
%0 Journal Article
%A V. A. Bezverkhnii
%T Self-adjointness of the dirac operator in a~space of vector functions
%J Matematičeskie zametki
%D 1975
%P 3-7
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a0/
%G ru
%F MZM_1975_18_1_a0
V. A. Bezverkhnii. Self-adjointness of the dirac operator in a~space of vector functions. Matematičeskie zametki, Tome 18 (1975) no. 1, pp. 3-7. http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a0/