Self-adjointness of the dirac operator in a space of vector functions
Matematičeskie zametki, Tome 18 (1975) no. 1, pp. 3-7
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper is devoted to the proof of the self-adjointness of the minimal operator defined on the space $L_2(-\infty,\infty;H)$ ($H$ being a separable Hilbert space) by the expression $l=iJ\frac d{dt}+A+B(t)$. The coefficients in this expression are self-adjoint operators on $H$, with $A$ being unbounded, $AJ+JA=0$, and the function $\|B(t)\|_H$ being assumed to lie in $L_2^{\operatorname{loc}}(-\infty,\infty)$. The result obtained is applicable to the Dirac operator.
@article{MZM_1975_18_1_a0,
author = {V. A. Bezverkhnii},
title = {Self-adjointness of the dirac operator in a~space of vector functions},
journal = {Matemati\v{c}eskie zametki},
pages = {3--7},
year = {1975},
volume = {18},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a0/}
}
V. A. Bezverkhnii. Self-adjointness of the dirac operator in a space of vector functions. Matematičeskie zametki, Tome 18 (1975) no. 1, pp. 3-7. http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a0/