Sufficient conditions for absolute asymptotic stability of linear equations in a~Banach space
Matematičeskie zametki, Tome 17 (1975) no. 6, pp. 919-923.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a linear differential equation of the type \begin{equation} \frac{dx}{dt}=A_0x(t)+A_1x(t-\Delta_1)+\dots+A_nx(t-\Delta_n)\tag{1} \end{equation} we establish the following \underline {THEOREM}. If $$ \overline{\bigcup_{|z_1|=\dots=|z_n|=1}\sigma\Bigl(A_0+\sum_{k=1}^nz_kA_k\Bigl)}\subset\{\lambda:\operatorname{Re}\lambda0\}, $$ then system (1) is absolutely asymptotically stable.
@article{MZM_1975_17_6_a9,
     author = {V. E. Slyusarchuk},
     title = {Sufficient conditions for absolute asymptotic stability of linear equations in {a~Banach} space},
     journal = {Matemati\v{c}eskie zametki},
     pages = {919--923},
     publisher = {mathdoc},
     volume = {17},
     number = {6},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_6_a9/}
}
TY  - JOUR
AU  - V. E. Slyusarchuk
TI  - Sufficient conditions for absolute asymptotic stability of linear equations in a~Banach space
JO  - Matematičeskie zametki
PY  - 1975
SP  - 919
EP  - 923
VL  - 17
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_17_6_a9/
LA  - ru
ID  - MZM_1975_17_6_a9
ER  - 
%0 Journal Article
%A V. E. Slyusarchuk
%T Sufficient conditions for absolute asymptotic stability of linear equations in a~Banach space
%J Matematičeskie zametki
%D 1975
%P 919-923
%V 17
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_17_6_a9/
%G ru
%F MZM_1975_17_6_a9
V. E. Slyusarchuk. Sufficient conditions for absolute asymptotic stability of linear equations in a~Banach space. Matematičeskie zametki, Tome 17 (1975) no. 6, pp. 919-923. http://geodesic.mathdoc.fr/item/MZM_1975_17_6_a9/