Extension of dissipative operators in a Hilbert space with an indefinite metric
Matematičeskie zametki, Tome 17 (1975) no. 6, pp. 909-918
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\mathscr H$ be a Hilbert space with an indefinite metric $[x,y]=(\mathscr Jx,y)$ where $\mathscr J$ is an arbitrary unitary and self-adjoint operator in $\mathscr H$ B is a closed $\mathscr J$-dissipative operator in $\mathscr H$ with an arbitrary domain of definition $\mathscr D(B)$ A description is given of all closed (and, in particular, closed maximal) $\mathscr J$-dissipative extensions $\widetilde B$ of the operator $B$ in terms of the corresponding extensions $\widetilde W$ of a nonexpansive operator $W$ in a definite way associated with an initial operator $B$.
@article{MZM_1975_17_6_a8,
author = {A. A. Nikonov and V. I. Utkin},
title = {Extension of dissipative operators in {a~Hilbert} space with an indefinite metric},
journal = {Matemati\v{c}eskie zametki},
pages = {909--918},
year = {1975},
volume = {17},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_6_a8/}
}
A. A. Nikonov; V. I. Utkin. Extension of dissipative operators in a Hilbert space with an indefinite metric. Matematičeskie zametki, Tome 17 (1975) no. 6, pp. 909-918. http://geodesic.mathdoc.fr/item/MZM_1975_17_6_a8/