Galois subrings of simple rings
Matematičeskie zametki, Tome 17 (1975) no. 6, pp. 887-892
Voir la notice de l'article provenant de la source Math-Net.Ru
Suppose $R$ is a finite direct sum of simple associative rings and $G$ is a finite group of auto-morphisms of the ring $R$. It is shown that if there is no additive $|G|$-torsion in $R$, then the subring of elements of $R$ that are fixed under $G$ is a finite direct sum of simple rings.
@article{MZM_1975_17_6_a5,
author = {V. K. Kharchenko},
title = {Galois subrings of simple rings},
journal = {Matemati\v{c}eskie zametki},
pages = {887--892},
publisher = {mathdoc},
volume = {17},
number = {6},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_6_a5/}
}
V. K. Kharchenko. Galois subrings of simple rings. Matematičeskie zametki, Tome 17 (1975) no. 6, pp. 887-892. http://geodesic.mathdoc.fr/item/MZM_1975_17_6_a5/