Galois subrings of simple rings
Matematičeskie zametki, Tome 17 (1975) no. 6, pp. 887-892.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose $R$ is a finite direct sum of simple associative rings and $G$ is a finite group of auto-morphisms of the ring $R$. It is shown that if there is no additive $|G|$-torsion in $R$, then the subring of elements of $R$ that are fixed under $G$ is a finite direct sum of simple rings.
@article{MZM_1975_17_6_a5,
     author = {V. K. Kharchenko},
     title = {Galois subrings of simple rings},
     journal = {Matemati\v{c}eskie zametki},
     pages = {887--892},
     publisher = {mathdoc},
     volume = {17},
     number = {6},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_6_a5/}
}
TY  - JOUR
AU  - V. K. Kharchenko
TI  - Galois subrings of simple rings
JO  - Matematičeskie zametki
PY  - 1975
SP  - 887
EP  - 892
VL  - 17
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_17_6_a5/
LA  - ru
ID  - MZM_1975_17_6_a5
ER  - 
%0 Journal Article
%A V. K. Kharchenko
%T Galois subrings of simple rings
%J Matematičeskie zametki
%D 1975
%P 887-892
%V 17
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_17_6_a5/
%G ru
%F MZM_1975_17_6_a5
V. K. Kharchenko. Galois subrings of simple rings. Matematičeskie zametki, Tome 17 (1975) no. 6, pp. 887-892. http://geodesic.mathdoc.fr/item/MZM_1975_17_6_a5/