A~sequence of complexly computable functions
Matematičeskie zametki, Tome 17 (1975) no. 6, pp. 957-966
Voir la notice de l'article provenant de la source Math-Net.Ru
Specific Boolean functions $f_{n,l}(x_1,\dots,x_n)$ are described and a high lower bound of the complexity of calculations using functional elements is obtained for them. In particular, for some values of the parameter $t=t(n)$ the functions $f_{n,t}$ are the most complex, to within a multiplicative constant, of the $n$-argument functions.
@article{MZM_1975_17_6_a13,
author = {L. A. Sholomov},
title = {A~sequence of complexly computable functions},
journal = {Matemati\v{c}eskie zametki},
pages = {957--966},
publisher = {mathdoc},
volume = {17},
number = {6},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_6_a13/}
}
L. A. Sholomov. A~sequence of complexly computable functions. Matematičeskie zametki, Tome 17 (1975) no. 6, pp. 957-966. http://geodesic.mathdoc.fr/item/MZM_1975_17_6_a13/