A~sequence of complexly computable functions
Matematičeskie zametki, Tome 17 (1975) no. 6, pp. 957-966.

Voir la notice de l'article provenant de la source Math-Net.Ru

Specific Boolean functions $f_{n,l}(x_1,\dots,x_n)$ are described and a high lower bound of the complexity of calculations using functional elements is obtained for them. In particular, for some values of the parameter $t=t(n)$ the functions $f_{n,t}$ are the most complex, to within a multiplicative constant, of the $n$-argument functions.
@article{MZM_1975_17_6_a13,
     author = {L. A. Sholomov},
     title = {A~sequence of complexly computable functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {957--966},
     publisher = {mathdoc},
     volume = {17},
     number = {6},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_6_a13/}
}
TY  - JOUR
AU  - L. A. Sholomov
TI  - A~sequence of complexly computable functions
JO  - Matematičeskie zametki
PY  - 1975
SP  - 957
EP  - 966
VL  - 17
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_17_6_a13/
LA  - ru
ID  - MZM_1975_17_6_a13
ER  - 
%0 Journal Article
%A L. A. Sholomov
%T A~sequence of complexly computable functions
%J Matematičeskie zametki
%D 1975
%P 957-966
%V 17
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_17_6_a13/
%G ru
%F MZM_1975_17_6_a13
L. A. Sholomov. A~sequence of complexly computable functions. Matematičeskie zametki, Tome 17 (1975) no. 6, pp. 957-966. http://geodesic.mathdoc.fr/item/MZM_1975_17_6_a13/