Estimate of a ~complete rational trigonometric su
Matematičeskie zametki, Tome 17 (1975) no. 6, pp. 839-849.

Voir la notice de l'article provenant de la source Math-Net.Ru

Supposef is a polynomial of degree $n\ge3$ with integral coefficientsa $a_0,a_1,\dots,a_n$; $q$ is a natural number; ($a_1,\dots,a_n, q)=1$ $f(0)=0$. It is proved that $$ \Bigl|\sum_{x=1}^qe^{2\pi if(x)/q}\Bigr|^{5n^2/\ln n}q^{1-1/n}. $$
@article{MZM_1975_17_6_a1,
     author = {V. I. Nechaev},
     title = {Estimate of a ~complete rational trigonometric su},
     journal = {Matemati\v{c}eskie zametki},
     pages = {839--849},
     publisher = {mathdoc},
     volume = {17},
     number = {6},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_6_a1/}
}
TY  - JOUR
AU  - V. I. Nechaev
TI  - Estimate of a ~complete rational trigonometric su
JO  - Matematičeskie zametki
PY  - 1975
SP  - 839
EP  - 849
VL  - 17
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_17_6_a1/
LA  - ru
ID  - MZM_1975_17_6_a1
ER  - 
%0 Journal Article
%A V. I. Nechaev
%T Estimate of a ~complete rational trigonometric su
%J Matematičeskie zametki
%D 1975
%P 839-849
%V 17
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_17_6_a1/
%G ru
%F MZM_1975_17_6_a1
V. I. Nechaev. Estimate of a ~complete rational trigonometric su. Matematičeskie zametki, Tome 17 (1975) no. 6, pp. 839-849. http://geodesic.mathdoc.fr/item/MZM_1975_17_6_a1/