Almost geodesic mappings of Riemann spaces onto symmetric Riemann spaces
Matematičeskie zametki, Tome 17 (1975) no. 5, pp. 757-763
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that if a Riemann space Vn admits a reduced almost geodesic mapping $\Pi_2$ onto a symmetric Riemann space $\overline V_n$, then $\overline V_n$ has constant curvature, and $V_n$ is itself a symmetric space.
@article{MZM_1975_17_5_a9,
author = {V. S. Sobchuk},
title = {Almost geodesic mappings of {Riemann} spaces onto symmetric {Riemann} spaces},
journal = {Matemati\v{c}eskie zametki},
pages = {757--763},
year = {1975},
volume = {17},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_5_a9/}
}
V. S. Sobchuk. Almost geodesic mappings of Riemann spaces onto symmetric Riemann spaces. Matematičeskie zametki, Tome 17 (1975) no. 5, pp. 757-763. http://geodesic.mathdoc.fr/item/MZM_1975_17_5_a9/