A~generalization of the Christoffel--Schwartz formula
Matematičeskie zametki, Tome 17 (1975) no. 5, pp. 749-756.

Voir la notice de l'article provenant de la source Math-Net.Ru

As a generalization of the well-known Christoffel–Schwartz formula, a formula is obtained for mapping the interior of the unit disk onto a domain whose boundary consists of $n$ arcs of curves, each of which, under the choice of some branch of the transformation $\zeta=w^m$, $m>0$, passes through a rectilinear segment of the $\zeta$-plane. It is shown that the class $B_m$ of Bazilevich functions coincides with the class $\overline L_m$ of functions representable by means of the obtained formula of the special type.
@article{MZM_1975_17_5_a8,
     author = {D. V. Prokhorov},
     title = {A~generalization of the {Christoffel--Schwartz} formula},
     journal = {Matemati\v{c}eskie zametki},
     pages = {749--756},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_5_a8/}
}
TY  - JOUR
AU  - D. V. Prokhorov
TI  - A~generalization of the Christoffel--Schwartz formula
JO  - Matematičeskie zametki
PY  - 1975
SP  - 749
EP  - 756
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_17_5_a8/
LA  - ru
ID  - MZM_1975_17_5_a8
ER  - 
%0 Journal Article
%A D. V. Prokhorov
%T A~generalization of the Christoffel--Schwartz formula
%J Matematičeskie zametki
%D 1975
%P 749-756
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_17_5_a8/
%G ru
%F MZM_1975_17_5_a8
D. V. Prokhorov. A~generalization of the Christoffel--Schwartz formula. Matematičeskie zametki, Tome 17 (1975) no. 5, pp. 749-756. http://geodesic.mathdoc.fr/item/MZM_1975_17_5_a8/