A generalization of the Christoffel–Schwartz formula
Matematičeskie zametki, Tome 17 (1975) no. 5, pp. 749-756
Cet article a éte moissonné depuis la source Math-Net.Ru
As a generalization of the well-known Christoffel–Schwartz formula, a formula is obtained for mapping the interior of the unit disk onto a domain whose boundary consists of $n$ arcs of curves, each of which, under the choice of some branch of the transformation $\zeta=w^m$, $m>0$, passes through a rectilinear segment of the $\zeta$-plane. It is shown that the class $B_m$ of Bazilevich functions coincides with the class $\overline L_m$ of functions representable by means of the obtained formula of the special type.
@article{MZM_1975_17_5_a8,
author = {D. V. Prokhorov},
title = {A~generalization of the {Christoffel{\textendash}Schwartz} formula},
journal = {Matemati\v{c}eskie zametki},
pages = {749--756},
year = {1975},
volume = {17},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_5_a8/}
}
D. V. Prokhorov. A generalization of the Christoffel–Schwartz formula. Matematičeskie zametki, Tome 17 (1975) no. 5, pp. 749-756. http://geodesic.mathdoc.fr/item/MZM_1975_17_5_a8/