Some relations among group-theoretic invariants of finite $p$-groups
Matematičeskie zametki, Tome 17 (1975) no. 4, pp. 571-578.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper there is given a formula for the number of solutions of the equation $x^{p^n}=1$ in an arbitrary finite $p$-group $G$ (of exponent $p^l$, $1\le n\le l$) and a formula for the number of cyclic subgroups of $G$ of any order. A connection is established among $|G|$, $p^l$, and the ranks of those subgroups of $G$ of order greater than $p^l$; if $G$ is regular, there are analogous relations among the orders of the characteristic subgroups $\Omega_n=\langle x\mid x\in G,x^{p^n}=1\rangle$, $n=1,2,\dots,l$, and the ranks of the subgroups of $G$ of order greater than $p^n$. These results are precise; some of them strengthen the well-known classical theorems of Frobenius and Miller for $p$-groups.
@article{MZM_1975_17_4_a8,
     author = {V. N. Shokuev},
     title = {Some relations among group-theoretic invariants of finite $p$-groups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {571--578},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_4_a8/}
}
TY  - JOUR
AU  - V. N. Shokuev
TI  - Some relations among group-theoretic invariants of finite $p$-groups
JO  - Matematičeskie zametki
PY  - 1975
SP  - 571
EP  - 578
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_17_4_a8/
LA  - ru
ID  - MZM_1975_17_4_a8
ER  - 
%0 Journal Article
%A V. N. Shokuev
%T Some relations among group-theoretic invariants of finite $p$-groups
%J Matematičeskie zametki
%D 1975
%P 571-578
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_17_4_a8/
%G ru
%F MZM_1975_17_4_a8
V. N. Shokuev. Some relations among group-theoretic invariants of finite $p$-groups. Matematičeskie zametki, Tome 17 (1975) no. 4, pp. 571-578. http://geodesic.mathdoc.fr/item/MZM_1975_17_4_a8/