On~a walk in a~strip with inhibitory boundaries
Matematičeskie zametki, Tome 17 (1975) no. 4, pp. 649-657
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper we have obtained ergodic theorems for walks generated by sums of stationarily connected random variables and two inhibitory boundaries. We have found representations for the steady-state distributions, permitting us to obtain in the case of independent summands a whole series of useful formulas. We discuss the connection of the results established with problems from queueing theory.
@article{MZM_1975_17_4_a16,
author = {A. A. Borovkov},
title = {On~a walk in a~strip with inhibitory boundaries},
journal = {Matemati\v{c}eskie zametki},
pages = {649--657},
publisher = {mathdoc},
volume = {17},
number = {4},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_4_a16/}
}
A. A. Borovkov. On~a walk in a~strip with inhibitory boundaries. Matematičeskie zametki, Tome 17 (1975) no. 4, pp. 649-657. http://geodesic.mathdoc.fr/item/MZM_1975_17_4_a16/