The inverse scattering problem of quantum theory
Matematičeskie zametki, Tome 17 (1975) no. 4, pp. 611-624
Voir la notice de l'article provenant de la source Math-Net.Ru
The inverse phase-type scattering problem for the boundary-value problem
\begin{gather}
-y''+q(x)y=k^2y\quad(0\le x\infty),\\
y'(0)=hy(0).
\end{gather}
is studied.
It is shown that, for each function $\delta(k)$ satisfying the hypotheses of Levinson's theorem, there exists a problem (1)–(2) with $h\ne\infty$ and another problem (1)–(2) with $h=\infty$ (i.e., with the boundary condition $y(0)=0$).
The solvability condition for the Riemann-Hilbert problem is used more directly than has been done heretofore by others in deriving boundary condition (2).
@article{MZM_1975_17_4_a12,
author = {B. M. Levitan},
title = {The inverse scattering problem of quantum theory},
journal = {Matemati\v{c}eskie zametki},
pages = {611--624},
publisher = {mathdoc},
volume = {17},
number = {4},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_4_a12/}
}
B. M. Levitan. The inverse scattering problem of quantum theory. Matematičeskie zametki, Tome 17 (1975) no. 4, pp. 611-624. http://geodesic.mathdoc.fr/item/MZM_1975_17_4_a12/