A~space of meromorphic functions
Matematičeskie zametki, Tome 17 (1975) no. 4, pp. 589-598
Voir la notice de l'article provenant de la source Math-Net.Ru
Mittag–Leffler's classical theorem on the expansion of a meromorphic function into partial fractions leads naturally to the construction of a topological nonvector space $\mathfrak M_{M\Pi}$. Several properties of this space are studied, the notion of a Mittag–Leffler basis is introduced, and a generalization of Mittag–Leffler's theorem is proved.
@article{MZM_1975_17_4_a10,
author = {E. G. Barsukov and M. G. Khaplanov},
title = {A~space of meromorphic functions},
journal = {Matemati\v{c}eskie zametki},
pages = {589--598},
publisher = {mathdoc},
volume = {17},
number = {4},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_4_a10/}
}
E. G. Barsukov; M. G. Khaplanov. A~space of meromorphic functions. Matematičeskie zametki, Tome 17 (1975) no. 4, pp. 589-598. http://geodesic.mathdoc.fr/item/MZM_1975_17_4_a10/