A~space of meromorphic functions
Matematičeskie zametki, Tome 17 (1975) no. 4, pp. 589-598.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mittag–Leffler's classical theorem on the expansion of a meromorphic function into partial fractions leads naturally to the construction of a topological nonvector space $\mathfrak M_{M\Pi}$. Several properties of this space are studied, the notion of a Mittag–Leffler basis is introduced, and a generalization of Mittag–Leffler's theorem is proved.
@article{MZM_1975_17_4_a10,
     author = {E. G. Barsukov and M. G. Khaplanov},
     title = {A~space of meromorphic functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {589--598},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_4_a10/}
}
TY  - JOUR
AU  - E. G. Barsukov
AU  - M. G. Khaplanov
TI  - A~space of meromorphic functions
JO  - Matematičeskie zametki
PY  - 1975
SP  - 589
EP  - 598
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_17_4_a10/
LA  - ru
ID  - MZM_1975_17_4_a10
ER  - 
%0 Journal Article
%A E. G. Barsukov
%A M. G. Khaplanov
%T A~space of meromorphic functions
%J Matematičeskie zametki
%D 1975
%P 589-598
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_17_4_a10/
%G ru
%F MZM_1975_17_4_a10
E. G. Barsukov; M. G. Khaplanov. A~space of meromorphic functions. Matematičeskie zametki, Tome 17 (1975) no. 4, pp. 589-598. http://geodesic.mathdoc.fr/item/MZM_1975_17_4_a10/