Reciprocity laws for algebras over function fields
Matematičeskie zametki, Tome 17 (1975) no. 3, pp. 419-422
Cet article a éte moissonné depuis la source Math-Net.Ru
A study is made of simple central algebras over an algebraic function field of one variable with a number field of constants. It is proved that there exists an algebra with a given collection of local invariants satisfying the reciprocity law under the assumption that the orders of the invariants are odd or the field of constants is purely imaginary.
@article{MZM_1975_17_3_a7,
author = {B. M. Bekker},
title = {Reciprocity laws for algebras over function fields},
journal = {Matemati\v{c}eskie zametki},
pages = {419--422},
year = {1975},
volume = {17},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_3_a7/}
}
B. M. Bekker. Reciprocity laws for algebras over function fields. Matematičeskie zametki, Tome 17 (1975) no. 3, pp. 419-422. http://geodesic.mathdoc.fr/item/MZM_1975_17_3_a7/