Strong summability of double series by matrix methods and Tauberian theorems for these methods
Matematičeskie zametki, Tome 17 (1975) no. 3, pp. 391-400
Voir la notice de l'article provenant de la source Math-Net.Ru
Conditions are established under which matrix transformations of double series and sequences preserve strong convergence. In addition, a general Tauberian theorem is established and applied to the method of Borel.
@article{MZM_1975_17_3_a4,
author = {K. M. Slepenchuk},
title = {Strong summability of double series by matrix methods and {Tauberian} theorems for these methods},
journal = {Matemati\v{c}eskie zametki},
pages = {391--400},
publisher = {mathdoc},
volume = {17},
number = {3},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_3_a4/}
}
TY - JOUR AU - K. M. Slepenchuk TI - Strong summability of double series by matrix methods and Tauberian theorems for these methods JO - Matematičeskie zametki PY - 1975 SP - 391 EP - 400 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1975_17_3_a4/ LA - ru ID - MZM_1975_17_3_a4 ER -
K. M. Slepenchuk. Strong summability of double series by matrix methods and Tauberian theorems for these methods. Matematičeskie zametki, Tome 17 (1975) no. 3, pp. 391-400. http://geodesic.mathdoc.fr/item/MZM_1975_17_3_a4/