Strong summability of double series by matrix methods and Tauberian theorems for these methods
Matematičeskie zametki, Tome 17 (1975) no. 3, pp. 391-400.

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions are established under which matrix transformations of double series and sequences preserve strong convergence. In addition, a general Tauberian theorem is established and applied to the method of Borel.
@article{MZM_1975_17_3_a4,
     author = {K. M. Slepenchuk},
     title = {Strong summability of double series by matrix methods and {Tauberian} theorems for these methods},
     journal = {Matemati\v{c}eskie zametki},
     pages = {391--400},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_3_a4/}
}
TY  - JOUR
AU  - K. M. Slepenchuk
TI  - Strong summability of double series by matrix methods and Tauberian theorems for these methods
JO  - Matematičeskie zametki
PY  - 1975
SP  - 391
EP  - 400
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_17_3_a4/
LA  - ru
ID  - MZM_1975_17_3_a4
ER  - 
%0 Journal Article
%A K. M. Slepenchuk
%T Strong summability of double series by matrix methods and Tauberian theorems for these methods
%J Matematičeskie zametki
%D 1975
%P 391-400
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_17_3_a4/
%G ru
%F MZM_1975_17_3_a4
K. M. Slepenchuk. Strong summability of double series by matrix methods and Tauberian theorems for these methods. Matematičeskie zametki, Tome 17 (1975) no. 3, pp. 391-400. http://geodesic.mathdoc.fr/item/MZM_1975_17_3_a4/