Strong summability of double series by matrix methods and Tauberian theorems for these methods
Matematičeskie zametki, Tome 17 (1975) no. 3, pp. 391-400
Cet article a éte moissonné depuis la source Math-Net.Ru
Conditions are established under which matrix transformations of double series and sequences preserve strong convergence. In addition, a general Tauberian theorem is established and applied to the method of Borel.
@article{MZM_1975_17_3_a4,
author = {K. M. Slepenchuk},
title = {Strong summability of double series by matrix methods and {Tauberian} theorems for these methods},
journal = {Matemati\v{c}eskie zametki},
pages = {391--400},
year = {1975},
volume = {17},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_3_a4/}
}
K. M. Slepenchuk. Strong summability of double series by matrix methods and Tauberian theorems for these methods. Matematičeskie zametki, Tome 17 (1975) no. 3, pp. 391-400. http://geodesic.mathdoc.fr/item/MZM_1975_17_3_a4/