Approximation properties in tensor products
Matematičeskie zametki, Tome 17 (1975) no. 3, pp. 459-466.

Voir la notice de l'article provenant de la source Math-Net.Ru

For distinct classes of locally convex spaces and tensor topologies $a=\varepsilon$ and $a=\pi$ it is proved that $E\widehat\otimes_\alpha F$ has the approximation property if and only if $E$ and $F$ have this property.
@article{MZM_1975_17_3_a12,
     author = {S. Heinrich},
     title = {Approximation properties in tensor products},
     journal = {Matemati\v{c}eskie zametki},
     pages = {459--466},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_3_a12/}
}
TY  - JOUR
AU  - S. Heinrich
TI  - Approximation properties in tensor products
JO  - Matematičeskie zametki
PY  - 1975
SP  - 459
EP  - 466
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_17_3_a12/
LA  - ru
ID  - MZM_1975_17_3_a12
ER  - 
%0 Journal Article
%A S. Heinrich
%T Approximation properties in tensor products
%J Matematičeskie zametki
%D 1975
%P 459-466
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_17_3_a12/
%G ru
%F MZM_1975_17_3_a12
S. Heinrich. Approximation properties in tensor products. Matematičeskie zametki, Tome 17 (1975) no. 3, pp. 459-466. http://geodesic.mathdoc.fr/item/MZM_1975_17_3_a12/