Best approximation of functions specified with an error at a finite number of points
Matematičeskie zametki, Tome 17 (1975) no. 3, pp. 359-368
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that for convex and centrally symmetric classes of functions a linear method is included among the best (in a definite sense) methods of approximation from values specified with an error at a finite number of points. For some of the simplest classes linear best methods are constructed and their error is estimated.
@article{MZM_1975_17_3_a1,
author = {A. G. Marchuk and K. Yu. Osipenko},
title = {Best approximation of functions specified with an~error at a~finite number of points},
journal = {Matemati\v{c}eskie zametki},
pages = {359--368},
year = {1975},
volume = {17},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_3_a1/}
}
TY - JOUR AU - A. G. Marchuk AU - K. Yu. Osipenko TI - Best approximation of functions specified with an error at a finite number of points JO - Matematičeskie zametki PY - 1975 SP - 359 EP - 368 VL - 17 IS - 3 UR - http://geodesic.mathdoc.fr/item/MZM_1975_17_3_a1/ LA - ru ID - MZM_1975_17_3_a1 ER -
A. G. Marchuk; K. Yu. Osipenko. Best approximation of functions specified with an error at a finite number of points. Matematičeskie zametki, Tome 17 (1975) no. 3, pp. 359-368. http://geodesic.mathdoc.fr/item/MZM_1975_17_3_a1/