Best approximation of functions specified with an~error at a~finite number of points
Matematičeskie zametki, Tome 17 (1975) no. 3, pp. 359-368.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for convex and centrally symmetric classes of functions a linear method is included among the best (in a definite sense) methods of approximation from values specified with an error at a finite number of points. For some of the simplest classes linear best methods are constructed and their error is estimated.
@article{MZM_1975_17_3_a1,
     author = {A. G. Marchuk and K. Yu. Osipenko},
     title = {Best approximation of functions specified with an~error at a~finite number of points},
     journal = {Matemati\v{c}eskie zametki},
     pages = {359--368},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_3_a1/}
}
TY  - JOUR
AU  - A. G. Marchuk
AU  - K. Yu. Osipenko
TI  - Best approximation of functions specified with an~error at a~finite number of points
JO  - Matematičeskie zametki
PY  - 1975
SP  - 359
EP  - 368
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_17_3_a1/
LA  - ru
ID  - MZM_1975_17_3_a1
ER  - 
%0 Journal Article
%A A. G. Marchuk
%A K. Yu. Osipenko
%T Best approximation of functions specified with an~error at a~finite number of points
%J Matematičeskie zametki
%D 1975
%P 359-368
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_17_3_a1/
%G ru
%F MZM_1975_17_3_a1
A. G. Marchuk; K. Yu. Osipenko. Best approximation of functions specified with an~error at a~finite number of points. Matematičeskie zametki, Tome 17 (1975) no. 3, pp. 359-368. http://geodesic.mathdoc.fr/item/MZM_1975_17_3_a1/