On Burnside's $p^\alpha q^\beta$ theorem
Matematičeskie zametki, Tome 17 (1975) no. 2, pp. 277-283.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study finite groups whose conjugate element classes have dimensions of the form $p^\alpha q^\beta$. We prove that the factors of the composition series of any such group either are cyclic or are isomorphic to one of the groups PSL(2, 4), PSL(2, 8).
@article{MZM_1975_17_2_a9,
     author = {A. V. Korlyukov},
     title = {On {Burnside's} $p^\alpha q^\beta$ theorem},
     journal = {Matemati\v{c}eskie zametki},
     pages = {277--283},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a9/}
}
TY  - JOUR
AU  - A. V. Korlyukov
TI  - On Burnside's $p^\alpha q^\beta$ theorem
JO  - Matematičeskie zametki
PY  - 1975
SP  - 277
EP  - 283
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a9/
LA  - ru
ID  - MZM_1975_17_2_a9
ER  - 
%0 Journal Article
%A A. V. Korlyukov
%T On Burnside's $p^\alpha q^\beta$ theorem
%J Matematičeskie zametki
%D 1975
%P 277-283
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a9/
%G ru
%F MZM_1975_17_2_a9
A. V. Korlyukov. On Burnside's $p^\alpha q^\beta$ theorem. Matematičeskie zametki, Tome 17 (1975) no. 2, pp. 277-283. http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a9/