$p$-Adic representations of rings with power basis
Matematičeskie zametki, Tome 17 (1975) no. 2, pp. 265-276.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Lambda=C[x]/(r_1(x)\dots r_3(x))$. Yakovlev [1] constructed a category whose indecomposable objects are in one-to-one correspondence with the indecomposable $\Lambda$-modules that are free and finitely generated over $C$. However, this was done for the case when all the ideals of the ring $C_i=C[x]/(r_i(x))$ are principal. In the present article the case when $C_i$ has ideals with two generators is investigated. With the help of the results obtained a description is given of the integral representations of the cyclic group of $p$-th order over $Z_p[\sqrt p]$ and the cyclic group of third order over $Z_3[\sqrt[3]3]$.
@article{MZM_1975_17_2_a8,
     author = {N. M. Kopelevich},
     title = {$p${-Adic} representations of rings with power basis},
     journal = {Matemati\v{c}eskie zametki},
     pages = {265--276},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a8/}
}
TY  - JOUR
AU  - N. M. Kopelevich
TI  - $p$-Adic representations of rings with power basis
JO  - Matematičeskie zametki
PY  - 1975
SP  - 265
EP  - 276
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a8/
LA  - ru
ID  - MZM_1975_17_2_a8
ER  - 
%0 Journal Article
%A N. M. Kopelevich
%T $p$-Adic representations of rings with power basis
%J Matematičeskie zametki
%D 1975
%P 265-276
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a8/
%G ru
%F MZM_1975_17_2_a8
N. M. Kopelevich. $p$-Adic representations of rings with power basis. Matematičeskie zametki, Tome 17 (1975) no. 2, pp. 265-276. http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a8/