There exist no Ramanujan congruences $\mod691^2$
Matematičeskie zametki, Tome 17 (1975) no. 2, pp. 255-263.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\tau(n)$ be Ramanujan's function, $$ x\prod_{m=1}^\infty(1-x^m)^{24}=\sum_{n=1}^\infty\tau(n)x^n. $$ In this paper it is shown that the Ramanujan congruence $\tau(n)\equiv\sum_{d/n}d^{11}\bmod691$ cannot be improved $\bmod691^2$. The following result is proved: for arbitrary $r$, $s\bmod691$ the set of primes such that $p\equiv r\bmod691$, $\tau(p)\equiv p^{11}+1+691\cdot s\bmod691^2$ has positive density.
@article{MZM_1975_17_2_a7,
     author = {A. A. Panchishkin},
     title = {There exist no {Ramanujan} congruences $\mod691^2$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {255--263},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a7/}
}
TY  - JOUR
AU  - A. A. Panchishkin
TI  - There exist no Ramanujan congruences $\mod691^2$
JO  - Matematičeskie zametki
PY  - 1975
SP  - 255
EP  - 263
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a7/
LA  - ru
ID  - MZM_1975_17_2_a7
ER  - 
%0 Journal Article
%A A. A. Panchishkin
%T There exist no Ramanujan congruences $\mod691^2$
%J Matematičeskie zametki
%D 1975
%P 255-263
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a7/
%G ru
%F MZM_1975_17_2_a7
A. A. Panchishkin. There exist no Ramanujan congruences $\mod691^2$. Matematičeskie zametki, Tome 17 (1975) no. 2, pp. 255-263. http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a7/