On the moduli of continuity of equimeasurable functions in the classes $\varphi(L)$
Matematičeskie zametki, Tome 17 (1975) no. 2, pp. 231-244.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the note we establish a number of relations between the moduli of continuity of the equimeasurable functions $f(x)$ and $f^*(x)$. In particular, for $f(x)\in L_p(0,1)$, $1\le p\infty$, we have proved the inequality $\omega_p(\delta,f)\ge\frac12\omega_p(\delta,f^*),\quad\delta\in\Bigl[0,\frac12\Bigr]$.
@article{MZM_1975_17_2_a5,
     author = {P. Oswald},
     title = {On the moduli of continuity of equimeasurable functions in the classes $\varphi(L)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {231--244},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a5/}
}
TY  - JOUR
AU  - P. Oswald
TI  - On the moduli of continuity of equimeasurable functions in the classes $\varphi(L)$
JO  - Matematičeskie zametki
PY  - 1975
SP  - 231
EP  - 244
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a5/
LA  - ru
ID  - MZM_1975_17_2_a5
ER  - 
%0 Journal Article
%A P. Oswald
%T On the moduli of continuity of equimeasurable functions in the classes $\varphi(L)$
%J Matematičeskie zametki
%D 1975
%P 231-244
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a5/
%G ru
%F MZM_1975_17_2_a5
P. Oswald. On the moduli of continuity of equimeasurable functions in the classes $\varphi(L)$. Matematičeskie zametki, Tome 17 (1975) no. 2, pp. 231-244. http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a5/