Convergence and divergence sets of sequences of real continuous functions on a~metric space
Matematičeskie zametki, Tome 17 (1975) no. 2, pp. 205-217.

Voir la notice de l'article provenant de la source Math-Net.Ru

A general theorem is proved describing convergence and divergence sets of real continuous functions defined on a metric space $E$. A result is obtained that is new even for $E=[0,1]$ with distance $p(x, y)=|x-y|$.
@article{MZM_1975_17_2_a3,
     author = {M. A. Lunina},
     title = {Convergence and divergence sets of sequences of real continuous functions on a~metric space},
     journal = {Matemati\v{c}eskie zametki},
     pages = {205--217},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a3/}
}
TY  - JOUR
AU  - M. A. Lunina
TI  - Convergence and divergence sets of sequences of real continuous functions on a~metric space
JO  - Matematičeskie zametki
PY  - 1975
SP  - 205
EP  - 217
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a3/
LA  - ru
ID  - MZM_1975_17_2_a3
ER  - 
%0 Journal Article
%A M. A. Lunina
%T Convergence and divergence sets of sequences of real continuous functions on a~metric space
%J Matematičeskie zametki
%D 1975
%P 205-217
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a3/
%G ru
%F MZM_1975_17_2_a3
M. A. Lunina. Convergence and divergence sets of sequences of real continuous functions on a~metric space. Matematičeskie zametki, Tome 17 (1975) no. 2, pp. 205-217. http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a3/