Convergence and divergence sets of sequences of real continuous functions on a~metric space
Matematičeskie zametki, Tome 17 (1975) no. 2, pp. 205-217
Voir la notice de l'article provenant de la source Math-Net.Ru
A general theorem is proved describing convergence and divergence sets of real continuous functions defined on a metric space $E$. A result is obtained that is new even for $E=[0,1]$ with distance $p(x, y)=|x-y|$.
@article{MZM_1975_17_2_a3,
author = {M. A. Lunina},
title = {Convergence and divergence sets of sequences of real continuous functions on a~metric space},
journal = {Matemati\v{c}eskie zametki},
pages = {205--217},
publisher = {mathdoc},
volume = {17},
number = {2},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a3/}
}
M. A. Lunina. Convergence and divergence sets of sequences of real continuous functions on a~metric space. Matematičeskie zametki, Tome 17 (1975) no. 2, pp. 205-217. http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a3/