The connectivity and approximative properties of sets in linear normed spaces
Matematičeskie zametki, Tome 17 (1975) no. 2, pp. 193-204
Voir la notice de l'article provenant de la source Math-Net.Ru
The connectivity of suns is investigated. It is shown that a sun is connected in finite-dimensional space. A set $M$ in uniformly convex space $X$ is shown to be approximatively compact if and only if $M$ is $P$-compact and the metric projection of $X$ onto $M$ is upper semicontinuous.
@article{MZM_1975_17_2_a2,
author = {V. A. Koshcheev},
title = {The connectivity and approximative properties of sets in linear normed spaces},
journal = {Matemati\v{c}eskie zametki},
pages = {193--204},
publisher = {mathdoc},
volume = {17},
number = {2},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a2/}
}
V. A. Koshcheev. The connectivity and approximative properties of sets in linear normed spaces. Matematičeskie zametki, Tome 17 (1975) no. 2, pp. 193-204. http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a2/