Mazur module for elliptic curves
Matematičeskie zametki, Tome 17 (1975) no. 2, pp. 319-328
Cet article a éte moissonné depuis la source Math-Net.Ru
Under certain assumptions parameters of the Mazur module for an elliptic curve $E$ over a $\Gamma$ extension $K_\infty/K_0$ are computed. This makes it possible, in particular, to prove in certain cases that the group $E(K_\infty)$ is finitely generated without assuming that the groups $E(K_0)$ и $\text{Ш}(\overline{K_0}/K_0,E)$ are finite.
@article{MZM_1975_17_2_a14,
author = {V. G. Berkovich},
title = {Mazur module for elliptic curves},
journal = {Matemati\v{c}eskie zametki},
pages = {319--328},
year = {1975},
volume = {17},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a14/}
}
V. G. Berkovich. Mazur module for elliptic curves. Matematičeskie zametki, Tome 17 (1975) no. 2, pp. 319-328. http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a14/