Homological dimension of cyclic Banach modules and homological characterization of metrizable compacta
Matematičeskie zametki, Tome 17 (1975) no. 2, pp. 301-305
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that if the relative homological dimension of the $A$ module $A/I$ is less than two, then the spectrum (which is not necessarily complementable) of the closed ideal $I$ of the Banach algebra $A$ is paracompact. As an application in the realm of relative homological theory a criterion for metrizability of compacta is obtained.
@article{MZM_1975_17_2_a12,
author = {Yu. V. Selivanov},
title = {Homological dimension of cyclic {Banach} modules and homological characterization of metrizable compacta},
journal = {Matemati\v{c}eskie zametki},
pages = {301--305},
year = {1975},
volume = {17},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a12/}
}
TY - JOUR AU - Yu. V. Selivanov TI - Homological dimension of cyclic Banach modules and homological characterization of metrizable compacta JO - Matematičeskie zametki PY - 1975 SP - 301 EP - 305 VL - 17 IS - 2 UR - http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a12/ LA - ru ID - MZM_1975_17_2_a12 ER -
Yu. V. Selivanov. Homological dimension of cyclic Banach modules and homological characterization of metrizable compacta. Matematičeskie zametki, Tome 17 (1975) no. 2, pp. 301-305. http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a12/