Homological dimension of cyclic Banach modules and homological characterization of metrizable compacta
Matematičeskie zametki, Tome 17 (1975) no. 2, pp. 301-305.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if the relative homological dimension of the $A$ module $A/I$ is less than two, then the spectrum (which is not necessarily complementable) of the closed ideal $I$ of the Banach algebra $A$ is paracompact. As an application in the realm of relative homological theory a criterion for metrizability of compacta is obtained.
@article{MZM_1975_17_2_a12,
     author = {Yu. V. Selivanov},
     title = {Homological dimension of cyclic {Banach} modules and homological characterization of metrizable compacta},
     journal = {Matemati\v{c}eskie zametki},
     pages = {301--305},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a12/}
}
TY  - JOUR
AU  - Yu. V. Selivanov
TI  - Homological dimension of cyclic Banach modules and homological characterization of metrizable compacta
JO  - Matematičeskie zametki
PY  - 1975
SP  - 301
EP  - 305
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a12/
LA  - ru
ID  - MZM_1975_17_2_a12
ER  - 
%0 Journal Article
%A Yu. V. Selivanov
%T Homological dimension of cyclic Banach modules and homological characterization of metrizable compacta
%J Matematičeskie zametki
%D 1975
%P 301-305
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a12/
%G ru
%F MZM_1975_17_2_a12
Yu. V. Selivanov. Homological dimension of cyclic Banach modules and homological characterization of metrizable compacta. Matematičeskie zametki, Tome 17 (1975) no. 2, pp. 301-305. http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a12/