Properties of interpolation spaces of completely continuous operators
Matematičeskie zametki, Tome 17 (1975) no. 2, pp. 293-300
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider interpolation spaces $\mathfrak G_{\theta,p}$ between the space $\mathfrak G_1$of nuclear operators and the space $\mathfrak G_\infty$ of completely continuous operators in a Hilbert space. We obtain an exact expression for the norm of an operator of $\mathfrak G_{\theta,p}$ by means of its approximation numbers. We consider the question of separability of the symmetric normed ideals of $\mathfrak G_{\theta,p}$, and the question of the duals to these s.n. ideals.
@article{MZM_1975_17_2_a11,
author = {N. V. Miroshin},
title = {Properties of interpolation spaces of completely continuous operators},
journal = {Matemati\v{c}eskie zametki},
pages = {293--300},
year = {1975},
volume = {17},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a11/}
}
N. V. Miroshin. Properties of interpolation spaces of completely continuous operators. Matematičeskie zametki, Tome 17 (1975) no. 2, pp. 293-300. http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a11/