Automorphisms of group $Gl_n(\mathfrak o)$ for $\dim \operatorname{Max}(\mathfrak o)\le n-2$
Matematičeskie zametki, Tome 17 (1975) no. 2, pp. 285-291.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the automorphisms of group $GLn(\mathfrak o)$, where $\mathfrak o$ is a commutative ring with unity and with an invertible element 2, not generated by the divisors of zero, while the space $\dim \operatorname{Max}(\mathfrak o)$ is Noetherian of dimension le $\le n-2$.
@article{MZM_1975_17_2_a10,
     author = {G. A. Noskov},
     title = {Automorphisms of group $Gl_n(\mathfrak o)$ for $\dim \operatorname{Max}(\mathfrak o)\le n-2$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {285--291},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a10/}
}
TY  - JOUR
AU  - G. A. Noskov
TI  - Automorphisms of group $Gl_n(\mathfrak o)$ for $\dim \operatorname{Max}(\mathfrak o)\le n-2$
JO  - Matematičeskie zametki
PY  - 1975
SP  - 285
EP  - 291
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a10/
LA  - ru
ID  - MZM_1975_17_2_a10
ER  - 
%0 Journal Article
%A G. A. Noskov
%T Automorphisms of group $Gl_n(\mathfrak o)$ for $\dim \operatorname{Max}(\mathfrak o)\le n-2$
%J Matematičeskie zametki
%D 1975
%P 285-291
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a10/
%G ru
%F MZM_1975_17_2_a10
G. A. Noskov. Automorphisms of group $Gl_n(\mathfrak o)$ for $\dim \operatorname{Max}(\mathfrak o)\le n-2$. Matematičeskie zametki, Tome 17 (1975) no. 2, pp. 285-291. http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a10/